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Abstract

Prevalence of autism spectrum disorder (ASD) has been increasing in the United States in the past decades. The exact mechanisms
remain enigmatic, and diagnosis of the disease still relies primarily on assessment of behavior. We first used a case–control design
(75 idiopathic cases and 29 controls, enrolled at Boston Children’s Hospital from 2007-2012 ) to identify plasma biomarkers of ASD
through a metabolome-wide association study approach. Then we leveraged a family-based design (31 families) to investigate the in-
fluence of shared genetic and environmental components on the autism-associated features. Using untargeted high-resolution mass
spectrometry metabolomics platforms, we detected 19 184 features. Of these, 191 were associated with ASD (false discovery rate-
< 0.05). We putatively annotated 30 features that had an odds ratio (OR) between <0.01 and 5.84. An identified endogenous metabo-
lite, O-phosphotyrosine, was associated with an extremely low autism odds (OR 0.17; 95% confidence interval 0.06-0.39). We also
found that glutathione metabolism was associated with ASD (P¼ 0.048). Correlations of the significant features between proband and
parents were low (median¼ 0.09). Of the 30 annotated features, the median correlations within families (proband–parents) were
�0.15 and 0.24 for the endogenous and exogenous metabolites, respectively. We hypothesize that, without feature identification,
family-based correlation analysis of autism-associated features can be an alternative way to assist the prioritization of potentially di-
agnostic features. A panel of ASD diagnostic metabolic markers with high specificity could be derived upon further studies.
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Introduction
Autism spectrum disorder (ASD) is a group of neurodevelopmen-
tal disorders characterized by impairment in communication and
social interaction, and repetitive behaviors.1 Over the past deca-
des, the prevalence of ASD in the United States has increased to 1
in 42 boys and 1 in 189 girls 2, with earlier3,4 and inclusive3,5 diag-
nosis contributing 12% and 56%–60% to the rise in prevalence, re-
spectively. Since the relative stability of genetic factors cannot
explain such a dramatic change in prevalence over such a short
period, the steady increase may be partially due to environmen-
tal factors or interplay between gene and environment.6 Recent
twin studies have suggested that nongenetic contribution of ASD
could be between 30% and 50%.7-10 At present, a diagnostic test
for ASD is not available through any objective biofluid test but
rely on assessing children’s behavior and developmental delays
by physicians and other health specialists.1,11

The metabolome includes all of the small molecules found
within a biological sample.12 The majority of the molecules are
endogenous metabolites that participate in the essential chemi-
cal reactions, while exogenous chemicals that originate from
the external environment can also be identified.13 Untargeted

high-resolution mass spectrometry (HRMS) provides broad-
spectrum coverage of the metabolome and therefore is com-
monly used to profile the molecular signatures presenting
physiological status of an individual. Data-driven studies of the
plasma metabolome have been successfully used to answer bio-
medical questions, for example, characterizing the disrupted
physiological processes and molecular fingerprint of disorders
and/or discovering the exogenous exposures associated with
health outcomes.14-18

Untargeted profiling of the metabolome has been applied to
study ASD. These studies mostly employed a case–control design
and aimed to identify biomarkers for early diagnosis, treatment,
or prevent, and understand the pathophysiologic networks of
ASD.19-30 To measure the blood or urine metabolome, analytical
platforms such as gas chromatography–mass spectrometry, liq-
uid chromatography–mass spectrometry, capillary electrophore-
sis–mass spectrometry, and nuclear magnetic resonance
spectroscopy can be used. Each of these platforms has its own
strengths and limitations in terms of speed, cost, sensitivity, and
interpretability of the signals.31,32 and the final choice is depen-
dent on the resources, sample types, and questions of interest in
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the studies. For exploratory analysis, employing multiple mass
spectrometry platforms can maximize sensitivity and hence cov-
erage of the metabolome, however, more than half of the pub-
lished ASD metabolomics studies were using only a single
platform.

Although powerful, untargeted metabolic profiling with HRMS
has a major drawback—only a small fraction of the detected signals
that have higher abundance in biofluids, such as glycolic acid, gly-
cine, and arginine, can be routinely identified.33 Recent develop-
ments in mass spectral molecular networking and community-
based spectral library have enhanced the interpretability of the met-
abolic profiles by providing correlation-based putative annotation,
however, many of the features could still remain unknown.34

Furthermore, data-driven ASD studies typically generate a list of
ASD-associated features and these potentially diagnostic features re-
quire structural confirmation and validation with independent
cohorts. Since a majority of the pilot and exploratory studies
employed a case–control design, associated features could be a mix
of endogenous and exogenous molecules. Clearly, environmental
chemicals have little biological relevance for reliable ASD prognosis
or diagnosis, and the ability to distinguish the origins of features
prior to tedious follow-up analyses would improve feature prioritiza-
tion and accelerate pace of discovery.

We set two aims for this study. In Aim 1, we sought to discover
new insights towards the molecular mechanism behind children
with ASD using orthogonal liquid chromatography–mass spec-
trometry method to maximize the detection of plasma metabo-
lome. In Aim 2, we posited that by studying the influence of
shared genetic and environmental components in ASD families,
we could deduce the origin and the role of the unknown ASD
characterizing features. Specifically, we applied a metabolome-
wide association study (MWAS) to an ASD-control comparison
and conducted a series of family-based correlation analyses
within and between probands and their parents. The overarching
goal is to increase our understanding toward the etiology, physi-
ology, and putative molecular biomarkers of ASD.

Methods
Study population
We recruited individuals with ASD and their parents, and unre-
lated neurotypical individuals as previously described.35,36 The
MWAS used a case–control study design. We enrolled a total of
104 individuals (75 cases and 29 controls), who were part of a
blood transcriptome study conducted at the Boston Children’s
Hospital (BCH) in the years 2007-2012. We recruited unrelated
controls from well-visit children to the Primary Care Center of
BCH and from healthy individuals who visited the Division of
Endocrinology of BCH for the evaluation of short stature. In our
family-based correlation investigation, we enrolled parents of
probands—40 mothers and 39 fathers. There were 31 families
with at least one proband and at least one parent. BCH
Institutional Review Board approved the study and we obtained
informed consent from all participating subjects or their custo-
dians prior to any data and sample collection.

Sample preparation and measurement
The whole blood was collected from participants in ethylenedi-
aminetetraacetic acid-treated tubes and centrifuged at 2000 �g
for 10 min at room temperature to obtain plasma. These samples
were then stored at �80�C until aliquoting and shipping. Plasma
samples were thawed overnight in 4 �C refrigerator and then ali-
quoted into 0.5 mL screw-cap tubes prior to shipping in a dry iced

box. Since blood samples were collected as part of standard clini-
cal practice, time since last caloric intake varied from 5 min to
8 h. We prepared and analyzed the samples using established
methods.37-39 We used dual-column chromatography (hydro-
philic interaction liquid chromatography [HILIC; XBridge BEH
Amide XP HILIC column; Waters, Waltham, MA, 50 � 2.1 mm,
2.5 lm] with positive electrospray ionization [ESI] and reversed-
phase liquid chromatography [RPLC; C18 column; Higgins
Analytical, Mountain View, CA, 50 � 2.1 mm, 2.6 lm] with nega-
tive ESI) coupled with HRMS for measuring the metabolome.

Data preprocessing
We converted raw data to open mzxml format using Proteowizard40

and conducted data preprocessing including peak detection, noise
filtering, peak quantification and alignment, averaging signals of
triplicates, peak matching and batch effect correction with
apLCMS41 and xMSanalyzer.42 The pipeline generated a data table
for each of HILIC and RPLC that comprises the relative signal intensi-
ties of 13 098 and 10 522 features, respectively.

We excluded features in the highest 20% of the coefficient of
variations across quality control samples and those with greater
than 80% zero intensity across study samples. The number of
features available in our analyses was 10 173 (HILIC) and 8011
(RPLC). We presented the details about inclusion and exclusion
criteria for ASD cases, controls and proband families, metabo-
lome measurement, and analyses of quality control samples in
the Supplementary material (Methods S1-S3).

Statistical analyses
Analytical overview
We divided the analysis into two parts as shown in Figure 1. (A)
For Aim 1: metabolomic profiling of ASD and (B) for Aim 2: fea-
ture correlations in the shared environment. We conducted the
analyses separately for HILIC and RPLC data. Using a case–con-
trol design, (A1) we executed an MWAS to unbiasedly discover
features associated with ASD. Then, we conducted a series of
analyses based on the MWAS selected features. (A2) We identi-
fied their chemical names through matching the measured
mass-to-charge ratio (m/z) with the theoretical values. We lever-
aged a family-based design to understand the influence of shared
genetic and environmental components on ASD. Specifically, we
(B1) computed the correlation of the MWAS features in proband-
mother and proband-father pairs and (B2) visualized the correla-
tion patterns as correlation globes.43 Additionally, we provided
complementary pathway enrichment for Aim 1 in the
Supplementary material (Method S4).

Metabolome-wide association study
To conduct an MWAS, we first extracted 75 cases and 29 controls
from the data table. We filtered out features with zero variance
in each group and analyzed the features that had greater than
zero variance in both cases and controls. The number of available
features was 10 143 (HILIC; 99.8% of the input features) and 7997
(RPLC; 99.8% of the input features). Then we scaled the log-trans-
formed features and ran a generalized linear model as follows:

ASD ¼ scale½log2ðfeature intensity þ 1Þ� þ ageþ sexþ batch

where ASD is a binary variable denoting the diagnosis of ASD; age
is a continuous variable (months); sex is a binary variable; batch is
a categorical variable denoting the analytical batch identifier of
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the samples. We used false discovery rate (FDR) to correct for

multiplicity when determining statistical significance.

Annotation of features
We used xMSannotator to annotate detected features.44 For each

feature, the accurate mass was searched against those chemicals

listed in Human Metabolome Database (HMDB), Kyoto

Encyclopedia of Genes and Genomes (KEGG), and LIPID MAPS45-47

at a 5 ppm error-tolerant window. To avoid generating excessive

false annotations, we only used hydrogen adduct for m/z match-

ing (HILIC: MþH; RPLC: M-H). A single feature could be unambig-

uously matched with unique chemical identity or matched with

multiple chemicals in the same or across different databases. We

only reported the MWAS significant features with unambiguous

putative annotation in the main table and provided the full puta-

tive annotation results in the Supplementary material (Table S1:

HILIC; Table S2: RPLC). We followed the identification confidence

levels in high resolution mass spectrometric analysis by

Schymanski et al. (level 1: confirmed structure, level 2: probable

structure, level 3: tentative candidate(s), level 4: unequivocal mo-

lecular formula, and level 5: exact mass) and reported all the me-

tabolite identification with a level 5 confidence level unless

otherwise specified.48 For the ASD-associated features that are

believed to be endogenous metabolites based on the putative an-

notation, we further validated their identities as follows: we iden-

tified spectral peaks in the in-house pooled plasma samples with

No. In Each Group
* ASD: 75

* Control: 29
* Mother: 40
* Father: 39

Untargeted Molecular Profiling

* HILIC-HRMS (positivemode)
* RPLC-HRMS (negative mode)

Data Preprocessing
* Feature detection, alignment, and

filtering; batch effect correction

No. of features:
HILIC: 10 173
RPLC: 8 011

A1) Metabolome-wide association study
For ASD and control groups:

* Logistic regression

No. of significant features:
HILIC: 125
RPLC: 66

A2) Putative annotation
* Match features to chemicals by

accurate mass

No. of annotated features:
HILIC: 20
RPLC: 10

Data Processing
For each familial group

* Extract residuals after adjusting for age,
sex, and batch

No. of families: 31
No. of familial pairs: 35
No. of mutual features:

HILIC: 79
RPLC: 45

A) Physiological Analysis B) Shared Environment Analysis

B1) Correlations within household
Estimate Spearman’s rank correlations:

* ASD-mother, ASD-father

B2) Correlation patterns within household
Create correlation globes:

* Visualize the Spearman’s rank
correlations matrixes of ASD, mother,

father, ASD-mother, ASD-father

Only on the
significant
features

Figure 1. Overview of the data collection and statistical analyses conducted in this study. After collecting plasma samples of ASD cases, controls, and
parents of ASD, we used two analytical platforms, HILIC and RPLC that were coupled with high-resolution mass spectrometry (HRMS) to conduct
untargeted metabolic profiling. Raw data was processed, including feature detection, peak alignment, batch effect correction, and feature filtering
before the data sets were sent to downstream analysis. For physiological analysis, we first run (A1) an MWAS on cases and controls to identify
significant features associated with ASD (FDR¼ 0.05). Then we (A2) putatively named the compounds by matching their accurate masses to those
unambiguously found in metabolite databases. Using the MWAS selected features, we conducted the shared environment analyses after adjusting for
confounders (i.e., analyzed the extracted residuals from the adjusting model). We (B1) first investigated the Spearman’s rank correlations within
households (i.e., in proband-mother, proband-father). Then we (B2) visualized the correlation patterns within households as correlation globes.
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sufficient intensity for tandem mass spectrometry. Tandem
mass spectrometry (MS/MS) fragmentation was then performed
on the matched parent m/z and the resulting fragmentation MS/
MS spectra were compared to those found in two public data-
bases—MetFrag49,50 and mzCloud (mzcloud.org)—to provide level
2 confidence (probable structure).48

Correlations within households
We studied the household correlations separately for mother and
father instead of averaging their signals to a single value (i.e.,
proband-mother and proband-father pairs). In each of the pro-
band, mother, and father groups, we first filtered MWAS features
that had> 80% zero intensity and fit a model to subtract linear
contributions of age, sex, and batch:

log2½ðfeature intensityþ 1Þ� ¼ ageþ sexþ batch

After matching with family ID, we had 35 pairs from 31 families
and 79 mutual features in each group (HILIC; 45 mutual features
for RPLC data). The model residuals were used as the input for all
the familial correlation analyses. We estimated the Spearman’s
rank correlations (rs) of the mutual features in proband-mother
and proband-father and corrected for multiplicity with FDR. We
used the proportion of significant correlations as a metric to
gauge the influence of shared components.

Correlation patterns within household
We estimated five rs matrices—proband, mother, father,
proband-mother, and proband-father—using the residuals esti-
mated from the previous step. In addition, using Euclidean dis-
tance, we performed hierarchical clustering analysis on the
features of ASD and arbitrarily set to create 9 feature groups to
aid pattern inspection. The group membership was applied to
mother and father and features were sorted in the same order to
aid visual inspection of the correlation patterns within house-
holds. We created the correlation globes with the R package circl-
ize (v 0.4.5).51

Computational settings
Our analyses took the following default settings unless otherwise
specified. To control spurious findings due to multiple testing, we
used a 5% FDR and reported the Q value, which is an FDR ad-
justed P-value. FDR was calculated separately for HILIC and RPLC
analyses. We transformed, or scaled, each variable feaure to
have mean zero and unit variance. We used a fudge factor of 1
(i.e., xþ 1) to avoid directly log-transforming variables with zero
intensity. Correlation refers to the estimation of Spearman’s rank
correlations. We executed all analyses using the computing envi-
ronment R (v 3.5.1). For reproducibility purposes, all analytic code
is publicly available on GitHub via an MIT license (github.com/
jakemkc/autism_shared_env).

Results
Study population
Demographic summary of the study population is shown in
Table 1. The majority of the enrolled subjects were Caucasian
and non-Hispanic with less than 5% Asian. We enrolled more
individuals with ASD (75 versus 29) that were younger (98 versus
147 months) and with more male (83% versus 62%) when com-
pared with neurotypical controls. Demographic characteristics of
mother and father, including sample size (40 versus 39), age in

months (493 versus 502), and ethnicity (98% versus 97% white)
were similar.

Molecular profile of autism spectrum disorder
Table 2 shows the putatively annotated chemicals together with
their test statistics. Out of the MWAS significant features (HILIC:
125, RPLC: 66), we could annotate 20 (16%) and 10 (15.2%) of them
by their accurate mass for HILIC and RPLC, respectively. Only a
few of these were associated with an increased odd of ASD
(HILIC: 5/20; RPLC: 0/10). ORs for HILIC data spanned from less
than 0.01 to 5.84 whereas those for RPLC were from less than 0.01
to 0.29. Annotated chemicals came from diverse chemical clas-
ses, such as piperidines, flavonoids, carboxylic acids and deriva-
tives for HILIC data, and carboxylic acids, naphthofurans, and
glycerolipids for RPLC data. Using the MWAS significant features
to conduct pathway enrichment analysis, we found that only glu-
tathione metabolism was affected (Table S4; P-value¼ 0.048).

Correlations in the shared environment
We show the distribution of the rss within households in Figure 2.
For HILIC data, mean rs was 0.08 (range: �0.35 to 0.71) and 0.11
(range: �0.28 to 0.60) for proband-mother and proband-father, re-
spectively. Only a few of the features had rs greater than 0.5.
Proband-mother had a uniform-like distribution of rs, whereas
that for proband-father is more resembled to normal. Of the 79
investigated features, 5% were significantly correlated—two were
significant in proband-mother and proband-father, respectively,
after FDR correction (i.e., four non-overlapping features). For
RPLC data, mean rs was 0.12 (range: �0.23 to 0.80) and 0.13 (�0.29
to 0.58) for proband-mother and proband-father, respectively.
Distribution of rss within households was similar to HILIC. Only
five of all the features had rs greater than 0.5. For all 45 features
investigated, 13% were significantly correlated—one was signifi-
cant in proband-mother and five were significant in proband-
father after FDR correction. All the significant correlations were
positively correlated with a magnitude greater than 0.45.

We show the within household rss of the MWAS significant
metabolites in Table 2. Overall, only two out of seven (28.6%) en-
dogenous and 13 out of 21 (61.9%) exogenous metabolites were
consistently detected in the ASD families. The median rss within
the families (across HILIC, RPLC, ASD-mother, and ASD-father)
were �0.15 and 0.24 for endogenous and exogenous metabolites,
respectively.

We show the within household correlation patterns in Figure 3.
In the correlation globes depicting the patterns of 79 features from
HILIC data, we did not observe strong similarity in the correlation
patterns between proband and mother (Figure 3A) nor between
proband and father (Figure 3B). Instead, we observed general simi-
larity in patterns between mother (Figure 3A, right half) and father
(Figure 3B, right half), and to a lesser extent, between proband-

Table 1. Demographic characteristics of autism cases, parents of
cases, and controls in this study

Characteristic Control Autism Mother Father

Number 29 75 40 39
Age, median (interquar-

tile range), months
152 (34) 83 (51) 501.5 (94.7) 504 (63)

Male, number (%) 18 (62) 62 (83) 0 (0) 39 (100)
Ethnicity, number (%)

White 27 (93) 71 (95) 39 (98) 38 (97)
Asian 1 (3) 2 (3) 0 (0) 0 (0)
Unknown 1 (3) 2 (3) 1 (3) 1 (3)

4 | Exposome, 2021, Vol. 1, No. 1

https://academic.oup.com/exposome/article-lookup/doi/10.1093/exposome/osab004#supplementary-data


T
ab

le
2.

Pu
ta

ti
ve

ly
id

en
ti

fi
ed

m
et

ab
ol

it
es

fr
om

th
e

M
W

A
S

of
au

ti
sm

ca
se

s
an

d
co

n
tr

ol
s

an
d

th
e

co
rr

el
at

io
n

s
of

m
et

ab
ol

it
es

w
it

h
in

th
e

A
SD

fa
m

il
ie

s
u

si
n

g
tw

o
d

if
fe

re
n

t
an

al
yt

ic
al

p
la

tf
or

m
s

Pl
at

fo
rm

M
on

oi
so

to
p

ic
m

as
s

O
R

(9
5%

C
I)

a
Q

va
lu

e
d

b
ID

b
N

am
e

S
ou

rc
e

S
p

ea
rm

an
co

rr
el

at
io

n
c

H
IL

IC
A

S
D

-M
ot

h
er

A
S

D
-F

at
h

er

12
9.

15
18

<
0.

01
(<

0.
01

-0
.0

3)
0.

04
C

01
74

0
O

ct
yl

am
in

e;
N

-O
ct

yl
am

in
e;

M
on

oc
ty

la
m

in
e

Ex
og

en
ou

s
�

0.
18

6
0.

27
6

15
5.

13
10

<
0.

01
(<

0.
01

-0
.0

1)
0.

01
C

06
18

4
N

-M
et

h
yl

p
el

le
ti

er
in

e
Ex

og
en

ou
s

0.
36

4
0.

25
5

14
9.

99
87

0.
01

(<
0.

01
-0

.0
7)

0.
04

H
M

D
B

42
03

2
T

h
io

d
ia

ce
ti

c
ac

id
En

d
og

en
ou

s
�

0.
28

2
0.

17
8

46
8.

95
11

0.
04

(0
.0

1-
0.

15
)

0.
01

H
M

D
B

60
64

0
La

m
iv

u
d

in
e-

tr
ip

h
os

p
h

at
e

En
d

og
en

ou
s

N
A

N
A

85
.0

89
1

0.
06

(0
.0

1-
0.

19
)

0.
01

H
M

D
B

34
30

1
Pi

p
er

id
in

e
Ex

og
en

ou
s

�
0.

14
5

�
0.

14
2

32
3.

31
88

0.
10

(0
.0

3-
0.

22
)

0.
01

H
M

D
B

34
37

3
N

-(
14

-M
et

h
yl

h
ex

ad
ec

an
oy

l)
p

yr
ro

li
d

in
e

Ex
og

en
ou

s
N

A
N

A
21

3.
98

79
0.

10
(0

.0
3-

0.
25

)
0.

01
H

M
D

B
06

80
1

2-
O

xo
-3

-h
yd

ro
xy

-4
-p

h
os

p
h

ob
u

ta
n

oi
c

ac
id

En
d

og
en

ou
s

N
A

N
A

14
1.

01
12

0.
12

(0
.0

4-
0.

28
)

0.
01

H
M

D
B

60
68

8
N

or
n

it
ro

ge
n

m
u

st
ar

d
En

d
og

en
ou

s
N

A
N

A
19

3.
06

00
0.

13
(0

.0
4-

0.
31

)
0.

02
C

16
78

9
T

ox
ofl

av
in

e
Ex

og
en

ou
s

N
A

N
A

35
0.

00
96

0.
15

(0
.0

5-
0.

34
)

0.
02

H
M

D
B

37
85

1
A

p
ig

en
in

7-
su

lf
at

e
Ex

og
en

ou
s

0.
34

6
0.

29
9

26
1.

04
02

0.
17

(0
.0

6-
0.

39
)

0.
02

H
M

D
B

06
04

9
O

-P
h

os
p

h
ot

yr
os

in
e

En
d

og
en

ou
s

N
A

N
A

34
1.

97
39

0.
19

(0
.0

8-
0.

39
)

0.
01

C
18

96
8

C
ar

bo
p

h
en

ot
h

io
n

Ex
og

en
ou

s
0.

30
8

0.
39

6
27

6.
01

24
0.

24
(0

.1
1-

0.
46

)
0.

02
C

11
57

0
2-

(2
-C

h
lo

ro
-p

h
en

yl
)-

5-
(5

-m
et

h
yl

th
io

p
h

en
-

2-
yl

)-
13

4o
xa

d
ia

zo
le

N
A

N
A

N
A

20
4.

98
10

0.
26

(0
.1

3-
0.

49
)

0.
02

C
12

28
4

Sa
cc

h
ar

in
so

d
iu

m
an

h
yd

ro
u

s
Ex

og
en

ou
s

N
A

N
A

37
8.

19
43

0.
30

(0
.1

6-
0.

54
)

0.
02

H
M

D
B

61
12

7
4R

-H
yd

ro
xy

so
li

fe
n

ac
in

En
d

og
en

ou
s

N
A

N
A

35
5.

94
97

0.
31

(0
.1

5-
0.

58
)

0.
04

H
M

D
B

15
61

0
Si

lv
er

su
lf

ad
ia

zi
n

e
Ex

og
en

ou
s

0.
20

4
0.

33
1

26
3.

08
44

2.
89

(1
.6

6-
5.

73
)

0.
05

H
M

D
B

42
05

6
T

u
lo

bu
te

ro
l

Ex
og

en
ou

s
0.

02
3

0.
23

6
50

0.
38

66
3.

14
(1

.7
4-

6.
37

)
0.

04
C

15
37

9
3b

et
a-

H
yd

ro
xy

la
n

os
ta

n
e-

71
1-

d
io

n
e

ac
e-

ta
te

Ex
og

en
ou

s
�

0.
02

0
0.

07
8

47
1.

09
23

3.
49

(1
.8

2-
7.

79
)

0.
05

H
M

D
B

61
08

3
d

es
bu

ty
l-

lu
m

ef
an

tr
in

e
En

d
og

en
ou

s
�

0.
18

5
�

0.
11

6
65

0.
22

11
5.

84
(2

.5
0-

17
.5

)
0.

03
LM

PK
12

05
03

58
5-

H
yd

ro
xy

-7
34

-t
ri

m
et

h
ox

y-
8-

m
et

h
yl

is
ofl

a-
vo

n
e

5-
O

-n
eo

h
es

p
er

id
os

id
e

Ex
og

en
ou

s
0.

24
1

0.
19

5

R
PL

P
32

6.
20

93
<

0.
01

(<
0.

01
-<

0.
01

)
0.

05
H

M
D

B
31

96
3

(3
b6

b8
a1

2a
)-

81
2-

Ep
ox

y-
7(

11
)-

er
em

op
h

i-
le

n
e-

68
12

-t
ri

m
et

h
ox

y-
3-

ol
Ex

og
en

ou
s

0.
00

3
0.

31
2

23
0.

05
79

<
0.

01
(<

0.
01

-<
0.

01
)

0.
02

LM
PK

13
11

00
03

V
is

n
ag

in
Ex

og
en

ou
s

�
0.

11
5

�
0.

03
7

41
0.

18
18

0.
06

(0
.0

1-
0.

18
)

0.
02

C
08

09
3

O
se

lt
am

iv
ir

p
h

os
p

h
at

e
Ex

og
en

ou
s

N
A

N
A

27
4.

21
44

0.
11

(0
.0

3-
0.

28
)

0.
02

C
13

85
4

1-
D

od
ec

an
oy

l-
sn

-g
ly

ce
ro

l
N

A
�

0.
15

5
�

0.
07

4
21

7.
07

73
0.

17
(0

.0
6-

0.
36

)
0.

02
H

M
D

B
15

32
8

C
ap

to
p

ri
l

Ex
og

en
ou

s
0.

21
1

0.
46

6
21

6.
07

46
0.

19
(0

.0
8-

0.
38

)
0.

02
C

17
35

9
8-

H
yd

ro
xy

al
an

yl
cl

av
am

Ex
og

en
ou

s
0.

28
1

0.
49

8
26

9.
19

91
0.

21
(0

.0
9-

0.
40

)
0.

02
H

M
D

B
32

25
5

N
-(

Et
h

ox
yc

ar
bo

n
yl

)m
et

h
yl

)-
p

-m
en

th
an

e-
3-

ca
rb

ox
am

id
e

Ex
og

en
ou

s
N

A
N

A

32
2.

17
80

0.
24

(0
.1

1-
0.

48
)

0.
03

H
M

D
B

32
70

2
Z

er
an

ol
Ex

og
en

ou
s

N
A

N
A

38
6.

23
05

0.
25

(0
.1

1-
0.

48
)

0.
03

C
11

99
0

O
le

an
d

ol
id

e
Ex

og
en

ou
s

N
A

N
A

33
2.

25
63

0.
29

(0
.1

5-
0.

53
)

0.
03

C
19

62
1

Fl
oi

on
ol

ic
ac

id
Ex

og
en

ou
s

N
A

N
A

O
n

ly
fe

at
u

re
s

w
it

h
le

ve
l5

id
en

ti
fi

ca
ti

on
co

n
fi

d
en

ce
(e

xa
ct

m
as

s)
an

d
u

n
am

bi
gu

ou
s

co
m

p
ou

n
d

m
at

ch
in

g
w

it
h

H
u

m
an

M
et

ab
ol

om
e

D
at

ab
as

e
(H

M
D

B
),

K
yo

to
En

cy
cl

op
ed

ia
of

G
en

es
an

d
G

en
om

es
(K

EG
G

),
an

d
LI

PI
D

M
A

PS
ar

e
sh

ow
n

.F
or

si
lv

er
su

lf
ad

ia
zi

n
e,

it
is

n
ow

lo
ca

te
d

in
th

e
T

ox
in

an
d

T
ox

in
T

ar
ge

t
D

at
ab

as
e

(T
3D

B
)w

it
h

an
ac

ce
ss

io
n

n
u

m
be

r
T

3D
30

68
.A

ll
of

th
e

m
et

ab
ol

it
es

w
er

e
m

at
ch

ed
by

ex
ac

t
m

as
s

th
ro

u
gh

co
m

p
ar

is
on

w
it

h
re

co
rd

s
in

re
fe

re
n

ce
d

at
ab

as
es

.O
n

ly
O

-p
h

os
p

h
ot

yr
os

in
e

w
as

id
en

ti
fi

ed
to

le
ve

l2
(p

ro
ba

bl
e

st
ru

ct
u

re
)b

y
m

at
ch

in
g

th
e

M
S/

M
S

sp
ec

tr
u

m
.A

p
u

ta
ti

ve
ly

an
n

ot
at

ed
m

et
ab

ol
it

e
by

ex
ac

t
m

as
s,

2-
ox

op
h

yt
an

ic
ac

id
,w

as
n

ot
sh

ow
n

be
ca

u
se

it
s

ta
n

d
em

m
as

s
sp

ec
tr

om
et

ry
(M

S/
M

S)
sp

ec
tr

u
m

d
id

n
ot

m
at

ch
w

it
h

th
e

re
co

rd
s

in
d

at
ab

as
es

.M
et

ab
ol

it
es

ar
e

so
rt

ed
by

si
ze

of
th

e
O

R
.

a
In

p
u

t
fe

at
u

re
s

to
th

e
m

od
el

w
er

e
lo

g-
tr

an
sf

or
m

ed
an

d
sc

al
ed

to
h

av
e

m
ea

n
ze

ro
an

d
u

n
it

va
ri

an
ce

.
b

U
n

iq
u

e
ID

fo
r

th
e

co
rr

es
p

on
d

in
g

ch
em

ic
al

s
fo

u
n

d
in

H
M

D
,K

EG
G

or
LI

PI
D

M
A

PS
.

c
Sp

ea
rm

an
’s

ra
n

k
co

rr
el

at
io

n
s

of
an

n
ot

at
ed

m
et

ab
ol

it
es

w
it

h
in

th
e

A
SD

fa
m

il
ie

s
(i

.e
.,

in
p

ro
ba

n
d

-m
ot

h
er

,p
ro

ba
n

d
-f

at
h

er
).

N
A

re
p

re
se

n
ts

th
e

m
et

ab
ol

it
e

n
ot

co
n

si
st

en
tl

y
d

et
ec

te
d

w
it

h
in

th
e

fa
m

il
ie

s.

Exposome, 2021, Vol 1 No. 1 | 5



mother (Figure 3A, across the globe) and proband-father (Figure 3B,
across the globe). These observations of correlation patterns were
also found for the 45 features from RPLC data (Figure 3C and 3D).

Discussion
Molecular profiling of ASD
In this study, we employed orthogonal separation techniques cou-
pled with HRMS to maximize coverage of the human plasma
metabolome. Our comprehensive analyses have shown that a total
of 191 chemical features were associated with ASD in our study co-
hort. These markers could be endogenous molecules acting as
mediators in the causal pathways for ASD, noncausal indicators of
ASD, or exogenous exposures with natural or anthropogenic ori-
gins. In the pathway enrichment analysis, we found that glutathi-
one metabolism was perturbed in ASD.

In our initial annotation, we found three putative MWAS sig-
nificant metabolites detected using HILIC could be endogenous
compounds (Table 2). Upon further identification, we found that
2-oxophytanic acid was a false positive and concentration of 2-
oxo-3-hydroxy-4-phosphobutanoic acid was too low for MS/MS
comparison. Only O-phosphotyrosine (pTyr) was identified by a
matched mass spectrum in the reference database.

pTyr (OR 0.17, 95% confidence interval [CI] 0.06-0.39) is a prod-
uct of tyrosine phosphorylation, which is the addition of a phos-
phate group to tyrosine and is catalyzed by tyrosine kinases.
Phosphorylation of tyrosine residues in proteins is an important
post-translational modification that is implicated in various bio-
logical processes including cell–cell signaling and proliferation as
well as neuronal maturation and synaptic plasticity.52

Concentration of pTyr in body fluid could be correlated with tyro-
sine kinase and pTyr phosphatase activities in tissue.53 In the
current study, sorting out the proteins with tyrosine residue re-
sponsible for lower concentration of pTyr in plasma samples
from ASD warrants further studies. Nonetheless, a receptor tyro-
sine kinase encoded by MET is implicated in pathophysiological

changes of ASD. A non-coding promoter variant of MET,
rs1858830 C allele is reported as a genetic risk factor of ASD.
rs1858830 CC genotype decreases MET promoter activity, which
results in down-regulation of MET gene expression.54

2-oxo-3-hydroxy-4-phosphobutanoic acid (OR 0.10, 95% CI
0.03-0.25) is part of the vitamin B6 pathway. Some have sug-
gested that vitamin B6 can be used as a supplement in brain dis-
order. However, a randomized controlled study to investigate this
relationship had shown negative results.55

We found a handful of exogenous chemicals including phar-
maceuticals, natural dietary molecules, and food additives to be
significantly associated with ASD (Table S4). The combination of
case–control design and blood sampling of ASD cases after diag-
nosis make our findings merely suggestive about their potential
roles in the cause and development of ASD. Nonetheless, these
shortlisted chemicals could be good candidates for future etiolog-
ical research.

Familial correlations
The metabolome of ASD cases is affected by genetics, the envi-
ronment, and the disease. We found 191 features were associated
with ASD in our case–control MWAS analysis. Many of these fea-
tures were not putatively annotated and we hypothesize that
these could be either (1) exogenous chemicals from confounders
such as unique environment or (2) endogenous biomarkers that
are pathophysiological signatures of ASD and possess diagnostic
value.

We leveraged a family-based study design and sought to obtain
hints about the origins of the ASD-associated features. Key findings
of our correlation analyses include low rss (averaged across HILIC
and RPLC data: proband-mother; median [interquartile range], 0.09
[0.35]; proband-father; median [interquartile range], 0.08 [0.3]) and
low similarity in correlation patterns in proband-mother and
proband-father. In a familial setting, assuming family members stay
12 h a day at home, proband share about 50% of the genetics and
the environment with the parents. In other studies, the median rss

Figure 2. Violin plots showing the distributions of the correlations of ASD–associating features within the ASD families. (A) HILIC platform; (B) RPLC
platform. Using the significant features found in the MWAS, we estimated the Spearman’s rank correlation for each feature between proband-mother,
proband-father. The number of shared features for estimating correlations were 79 (HILIC) and 45 (RPLC) after data preprocessing for familial analysis.
In each plot, we overlaid with a one-dimensional scatter plot and a boxplot showing median, interquartile ranges, and whiskers extending to the largest
values within 1.5*interquartile range.
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of exogenous chemicals between couples were about 0.2143 (serum;
polychlorinated biphenyls, organochlorine pesticides, polybromi-
nated chemicals, per- and poly-fluoroalkyl substances, and metals)
and 0.4156 (urine; triclosan, phenols, bisphenols, parabens, and
phthalates). For child–parent pairs, the median rss were 0.31 and
0.68 for serum perfluorinated compounds and polybrominated
diphenyl ethers, respectively.57,58 In addition, almost all of the exoge-
nous chemicals were positively correlated in these studies.

Further, using the known origin of some of the putatively
identified metabolites (Table 2), we found that only 28.6% of the
ASD-associated endogenous metabolites were also detected in
parents, which is much smaller than that for exogenous metabo-
lites (61.9%). Also, the median rs within the families for endoge-
nous metabolites was smaller than that of exogenous

metabolites (�0.15 and 0.24, respectively). These comparisons
and analyses suggest that familial correlation in the ASD families
could be used to infer the origin of the ASD-associated features
found in the case–control MWAS. Correlation has a range be-
tween �1 and þ1 and we hypothesize that the smaller the famil-
ial correlation of an MWAS feature, the more likely that it is
endogenous, and may rank higher in priority for follow-ups such
as structural confirmation and validation of diagnostic value.

Several studies have shown the potential of using plasma
metabolites as clinical biomarkers for diagnosing neurological
diseases.28,59-62 For example, West et al. found a set of over 100
metabolites that were able to discriminate ASD subjects from
typically developing children with a maximum accuracy (area
under the curve) of 81%.28 In an Alzheimer disease study,

ASD Mother

ASD Father

ASD Mother

ASD Father

A

B

C

D

Figure 3. Correlation globe showing the correlation patterns in the shared environment. (A) and (B): HILIC platform; (C) and (D) RPLC platform. Using
the HILIC platform as an example, we estimated the Spearman’s rank correlations of 79 ASD correlating features shared in ASD families (RPLC: 45
shared features). To facilitate visual inspection of the patterns, we assigned the features in ASD, mother, and father into nine feature groups based on
the results from hierarchical clustering on ASD cases. Each correlation globe is showing the correlations within ASD, within parents (mother or father),
and between ASD and parents (mother or father). Features are arranged as a circular track. Left and right halves of the globe represent features in ASD
and parent (mother or father), respectively. Only Spearman’s rank correlations greater than 0.5 and smaller than �0.5 are shown as connections in the
globe. Red line denotes positive correlation, and dark green line denotes a negative one. Color intensity and line width are proportional to the size of the
correlation. Within-group and between-group correlations are shown outside and inside of the track, respectively. Correlations between ASD and
parent are indicated by the lines linking across the vertical half of the globe.
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Stamate et al. reported that the diagnostic performance of using

plasma metabolites had the potential to match the well-

established cerebrospinal fluid biomarkers.60

Limitations
We identified a few study limitations that pose a challenge to

our findings. First, individuals with ASD were not matched

with neurotypical controls by age and by sex; specifically, the

control group was older with a higher proportion of female. To

address this case–control imbalance, we adjusted the analyses

by age and sex. Second, blood samples were not collected un-

der an overnight fasting protocol. Our analysis may suffer from

higher variability and hence reduced statistical power to detect

associations. Third, for most of the putatively annotated

metabolites, we did not conduct additional identification such

as matching fragmentation patterns in a spectral library or

comparison with authentic standards and thus they should be

interpreted with caution. Fourth, autism is a complex and mul-

tifactorial disease and may require a larger sample size to cap-

ture a greater number of metabolites at smaller association

sizes, that in totality, may ascribe more variation to autism.

The sample size in this study (n¼ 104) is insufficient for a reli-

able subtype analysis. Last, our MWAS analysis could be con-

founded by unmeasured factors such as medication and

dietary factors. The primary goal of this exploratory study is to

investigate what deep metabolomics measurement could tell

us about autism and the families with children who have au-

tism.

Conclusions
Our case–control MWAS analysis revealed that a total of 191 fea-

tures were associated with ASD. An identified metabolite, O-

phosphotyrosine, was associated with a decreased risk of ASD.

We also found glutathione metabolism was affected in ASD.

Family-based correlation of ASD-associated features can assist

the prioritization of potentially diagnostic features. Further stud-

ies are required to select a panel of reproducible metabolites,

quantify their the diagnostic performance in different clinical set-

tings of the metabolites, and identify the exogenous environmen-

tal factors associated with the metabolites.
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